Cultivated anti*-Aspergillus* T_H^1 Cells

Thomas Lehrnbecher

Pediatric Hematology and Oncology
Frankfurt/Main, Germany
Invasive fungal infection after allogeneic SCT

Incidence of proven invasive fungal infections after allogeneic SCT ~15 %

Mortality 50% to 90 %

A. fumigatus, less frequently *A. flavus* or *A. terreus* seen as causing pathogen

Hebart et al. *Support Care Cancer* 2004
Lin et al. *Clin Infect Dis* 2001
Risk factors for invasive aspergillosis

Exposure

Severe mucositis
Broad-spectrum antibiotics
Prolonged neutropenia
Defects of phagocyte function (e.g., steroids)

Defects of adaptive immunity (e.g., T-cell deficiency)
Invasive aspergillosis after SCT

<table>
<thead>
<tr>
<th>PHASE I</th>
<th>PHASE II</th>
<th>PHASE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 DAYS</td>
<td>30-100 DAYS</td>
<td>100-360 DAYS</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Impaired cellular immunity</td>
<td>Impaired cellular and humoral immunity</td>
</tr>
</tbody>
</table>

- Neutropenia: 31%
- Impaired cellular immunity: 69%

Aspergillus species

American Society for Blood and Marrow Transplantation, 2000
T-cells and invasive fungal infection

- *Aspergillus* fumigatus antigens are capable to induce T\textsubscript{H}1 (IFN-\textgreek{g}, IL-2, TNF-\textalpha) or T\textsubscript{H}2 response (IL-4, IL-5, IL-10)

- Patients with invasive aspergillosis and T\textsubscript{H}1 response (increased IFN-\textgreek{g}, low IL-10) have a better outcome than patients with T\textsubscript{H}2 response (low IFN-\textgreek{g}, increased IL-10)

- Adoptive transfer of dendritic cells pulsed with *Aspergillus* conidia increase resistance to invasive aspergillosis in mice

Kurup et al *Peptides* 1996
Hebart et al *Blood* 2002
Bozza et al *Blood* 2003
Principle of adoptive immunotherapy after SCT

Collection of stem cells → Transplantation → Immunotherapy

- Effector cells
- Normal cell
- Leukemic cell
- Aspergillus

High dose chemotherapy
Anti-*Aspergillus* T-cells in transplant patients

Transfusion of anti-*Aspergillus* T-cells in 10 patients after haploidentical SCT with evidence of invasive aspergillosis (e.g., pneumonia, positive galactomannan antigenemia)

Immunotherapy 17-37 days after transplantation

Galactomannan antigenemia resolved in all patients within 6 weeks of infusion ($P<.002$ versus controls)

1/10 patients died vs 6/13 controls not receiving immunotherapy

Generation of anti-*Aspergillus* T_{H1}-cells by limiting dilution (minimum time required: 25 days)

Perruccio et al. *Blood* 2005
Objectives

- Rapid generation of T-cells against *Aspergillus* spp. possible?
- Specificity of generated T-cells?
- Alloreactivity (risk of GvHD) of selected T-cells?
- Antifungal activity of purified and expanded T-cells?
- Clinical-scale generation of anti-*Aspergillus* T-cells feasible?

Beck et al. submitted
Isolation and expansion of anti-Aspergillus T-cells

50-100 ml peripheral blood

Stimulation with Aspergillus-antigen(s)

Only antigen-specific T-cells are activated to produce cytokines

Cytokine-secreting cells are magnetically labelled with MicroBeads

Selection over magnetic column

anti-Aspergillus T-cells

Culture and expansion

Characterization and functional tests
Immunophenotype of anti-\textit{Aspergillus} T-cells

Number of generated cells after 10-14 days: median 1.1 \times 10^7 (0.4 – 2.8 \times 10^7; n=7)

Phenotype:
CD3: >97%
CD4: >97%
CD45RO: >97%
HLA-DR: >90%
→ activated memory T-cells

Beck et al \textit{Blood} 2006
Cytokine secretion of anti-Aspergillus T-cells

Cytokine secretion upon restimulation:
IFN-γ, TNF-α
No IL-4, IL-10

\(\text{T_H1 cells} \)
Proliferation upon restimulation

→ Generated T-cells not terminally differentiated
→ Further expansion of anti-Aspergillus T-cells in vivo to be expected if stimulated by Aspergillus-antigen presenting cells
Killing of *A. fumigatus* hyphae

→ Combination of PMNs, T-cells and APCs exhibited highest hyphal damage
→ Hyphal damage also by T-cells alone (mechanism?)

Graph:
- XTT assay; minimum of 12 tests (each in triplicate)
- Hyphal Damage in %
- P<.0001

- APC
- AST
- APC+AST
- PMN
- APC+PMN
- AST+PMN
- APC+AST+PMN
Specificity of anti-Aspergillus T-cells

Cross-reactivity might be of clinical advantage, in particular since isolation of the pathogen not possible in most cases!
Donor T-cells and Graft-versus Host Disease

GvHD results from reactivity of donor T-cells against recipient (host) tissue → activation of alloreactive T-cells and production of inflammatory cytokines

Skin

Liver (e.g., bilirubin↑)

Gut (e.g., diarrhea, pain)
Alloreactivity of anti-*Aspergillus* T-cells

Selected anti-*Aspergillus* T-cells +
allogeneic APCs

→ Purified anti-*Aspergillus* T-cells coincubated with allogeneic APC’s with lower proliferation response than unselected CD4+ cells
Reduced alloreactivity of anti-Aspergillus T-cells

In vitro data indicate that purified anti-Aspergillus T-cells have a marked reduction of alloreactivity compared to unselected T-cells.
Clinical-scale generation of anti-Aspergillus T-cells

For testing adoptive immunotherapy with anti-Aspergillus T-cells („drug“) → generation of cells according to good manufacturing practice (GMP)

GMP-conditions include

- Special, approved facility (Institute of Transfusion Medicine, Frankfurt)
- Approved material (e.g., clinical-scale CliniMACS device, closed system, GMP-grade serum and cytokines)
- Extensive controls (e.g., endotoxin, contamination)
Clinical-scale generation of anti-\textit{Aspergillus} T-cells

Leukapheresis product (approx. 1×10^9 WBCs) → CSA (CliniMACS) → Negative-fraction → Generation of monocyte-derived DCs using \textit{A.fumigatus} antigens → Dendritic cells → Day 3-4 → Day 6-7 → Anti-\textit{Aspergillus} T_H^1-cells → Expansion (approx. 12-14 days) → Anti-\textit{Aspergillus} T_H^1-cells → Stimulation with \textit{A.fumigatus} antigens (tested for: - Bacterial and fungal growth (sterility) - Endotoxin)

- Number of cells
- Phenotypic analysis
- Assessment for endotox and sterility

Tramsen et al. submitted
Clinical-scale generation of anti-Aspergillus T-cells

<table>
<thead>
<tr>
<th>Generated cells*</th>
<th>Total number of cells (WBCs-CD45*) (median, range) [x10^6]</th>
<th>Viable** CD3^+CD4^+ T-cells (median, range) [x10^6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>After culture</td>
<td>22 (13-37)</td>
<td>19 (8-31)</td>
</tr>
<tr>
<td>After cryopreservation</td>
<td>8 (7-12)</td>
<td>6 (6-10)</td>
</tr>
</tbody>
</table>

* three independent experiments
** assessed by 7-AAD staining
Summary

- Generation of functionally active anti-\textit{Aspergillus} T\textsubscript{H}1-cells is feasible under GMP conditions → clinical application in prophylaxis and therapy
- Anti-\textit{Aspergillus} T-cells expand after restimulation with \textit{Aspergillus} antigens
- Anti-\textit{Aspergillus} T-cells can be stimulated by different \textit{Aspergillus} species, but not by antigens of \textit{Candida} spp or \textit{Alternaria} alternata
- Anti-\textit{Aspergillus} T-cells show reduced alloreactivity compared with that of the original cell population
- Anti-\textit{Aspergillus} T-cells increase hyphal damage induced by human neutrophils
Open questions

• Which patient population will benefit from immunotherapy with anti-
 Aspergillus T-cells?

• When and how often to infuse anti-Aspergillus T-cells?
 → (Secondary) prophylaxis for highest risk patients?
 → Therapeutic strategy?

• Adequate number of anti-Aspergillus T-cells to be given?
 → Efficacy
 → Safety

• Interaction with/influence by antimycotic compounds?
Acknowledgement

University of Frankfurt
Lars Tramsen
Olaf Beck
Frauke Roeger
Mitra Hanisch
Ulrike Koehl
Thomas Klingebiel

University of Thessaloniki
Emmanuel Roilides
Maria Simitsopoulou

Institut Pasteur, Paris
Jean-Paul Latgé
Jacqueline Sarfati

Institute for Transfusion Medicine, Frankfurt
Torsten Tonn
Erhard Seifried

University of Würzburg,
Hermann Einsele
Max Topp

Deutsche Leukämie Forschungshilfe (DLFH)
Thank you for your attention!